https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Efficient removal of antimonate from water by yttrium-based metal-organic framework: Adsorbent stability and adsorption mechanism investigation https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:46733 0.90) and Langmuir isotherm models (R2 > 0.97) quite well described the adsorption of Sb(V) on Y-based MOFs, revealed that the uptake of Sb(V) on Y-based MOFs were followed by a monolayer chemical adsorption process. The maximum adsorption capacities of Sb(V) calculated from the Langmuir model were 161.3 and 151.5 mg/g for MOF-Y and NH2-MOF-Y, respectively. The Y-based MOFs exhibited strong water and chemical stability, it could be utilized for removal Sb(V) under wide pH range and various concentration of Sb(V). The spent adsorbents could be successfully regenerated by NaCl (5 mol/L) solution for further utilization without damaging the crystal structure of Y-based MOFs. X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) results revealed that the formation of inner-sphere Y-O-Sb complex between Y-oxo-clusters and Sb(V) was the dominant adsorption mechanism, while the co-precipitation of Y3+ and Sb(V) was also partially contributed the Sb(V) adsorption. High stability together with high Sb(V) adsorption capacity and excellent recyclability endow the Y-based MOFs as promising adsorbents for Sb(V) removal from wastewater.]]> Wed 22 Mar 2023 18:38:30 AEDT ]]> Comparative removal of As(V) and Sb(V) from aqueous solution by sulfide-modified a-FeOOH https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:38847 −, SO42−, NO3, SiO32− and PO43−. The adsorption affinity increased from 0.0047 to 0.0915 and 0.0053 to 0.4091 for As(V) and Sb(V), respectively. X-ray photoelectron spectroscopic investigation demonstrated a reductive conversion of As(V) to As(III) during the adsorption process with sulfide-modified α-FeOOH, but with no obvious variation of Sb(V) speciation. While the removal mechanism for As(V) was reduction followed by adsorption via hydroxyl groups, mainly surface complexation was involved in the removal of Sb(V). This study presented a simple strategy to enhance the adsorption capacity and adsorption affinity of α-FeOOH toward As(V)/Sb(V) via sulfide-modification.]]> Wed 16 Feb 2022 10:55:29 AEDT ]]> Immobilization of lead and copper in aqueous solution and soil using hydroxyapatite derived from flue gas desulphurization gypsum https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:35990 Thu 23 Jan 2020 11:40:13 AEDT ]]> Utilization of phosphorus loaded alkaline residue to immobilize lead in a shooting range soil https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:30097 Sat 24 Mar 2018 07:37:55 AEDT ]]>